Notes on Proving the Security
of Single-Party Schnorr

Chelsea Komlo
May 4, 2022

1 Introduction

This is an extremely informal review of Schnorr signatures and several meth-
ods to prove their security with respect to the discrete logarithm problem and
variants thereof.

As a primer, Schnorr signatures are a fundamental cryptographic primitive
in use today. Schnorr signatures are a sigma proof of knowledge of discrete
log, made non-interactive and bound to some message m via the Fiat-Shamir
transform. Sigma proofs of knowledge are characterised by a three-move proto-
col, where a prover begins by issuing a commitment, receives a challenge, and
then issues a response. The proof is verified with respect to the commitment,
challenge, and response. Notably, sigma proofs of knowledge can be made to
be zero-knowledge, in that they allow the verifier to check the integrity of a
proof with respect to some public information (the proof statement), without
revealing private information (the proof witness) to the verifier.

2 Preliminaries

Let G be a prime-order group of order ¢ and g be a generator for G. = « y
denotes the assignment of the value of y to x, and = <~ S denotes sampling an
element from the set S uniformly at random. z <~ A() is the random variable
x that is the output of a randomized algorithm A.

A Tiny Primer on Proving Security of Cryptographic Schemes When
proving the security of cryptographic schemes, we want to demonstrate that the
security of a particular scheme reduces to a hard mathematical problem. In
the setting of schemes which are not information theoretically secure, security
is modeled with respect to a computationally-bound adversary, which we as-
sume is capable of performing polynomial-time operations efficiently, and that
is probabilistic (i.e, the adversary has access to a random tape). We model



the adversary as a Turing machine which can query oracles, keep its own inter-
nal state, and output some values at the end of its execution, with the goal of
winning some pre-defined game.

In this note, we review reductions from the hardness of such an adversary
producing a forgery of a Schnorr signature with respect to a given public key,
to the hardness of solving for the discrete logarithm of an element within a
prime-order group.

Random Oracle Model. The random oracle model (ROM) assumes that
cryptographic hash functions (which we denote as H) operate as random or-
acles. In short, with each query H(a) — ~1,H(8) — 72, the outputs 71,72
are assumed to be completely uncorrelated and act as values chosen at random
from some (large enough to be hard to permute) set. In reality, we know that
cryptographic hash functions are not so perfect, but this assumption is often
critical to be able to demonstrate the security of many cryptographic primitives.

Forking Lemma. The forking lemma (introduced by Pointcheval and Stern)
gives a lower bound to the probability of success when a probabilistic (allowed
access to randomness) polynomial-time adversary is rewound to a specific point
in a security game. At a high level, rewinding an adversary is a technique used
when proving security to later extract sufficient information to demonstrate
a reduction from the cryptographic scheme to a hard mathematical problem.
Importantly, rewinding allows for “forking” an adversary’s state, where it is
guaranteed that the adversary outputs or operates over deterministic elements
before the fork, whereas the adversary might diverge after the fork due to the
introduction of fresh randomness. The forking lemma gives a hard bound on
the probability that the adversary will succeed in a second execution, given the
adversary’s success in the first execution and access to the same random tape
(i.e, the same source of randomness between the two executions).

More specifically, given a three-move sigma protocol ¥ for which an adver-
sary A has likelihood e chance of success outputting a forgery, the forking lemma
says that there exists a 1/e chance that for two runs of the protocol, the adver-
sary will output the same first move (the commitment) but where the verifier
outputs a distinct challenge between the two executions.

3 Schnorr Identification and Signature Schemes

First, we’ll take a look at a Schnorr identification scheme, and then move on to
Schnorr signatures.

3.1 Schnorr Identification Protocol

In this scheme, the prover simply proves knowledge of their secret key sk cor-
responding to the publicly known public key PK. The challenge is chosen
dynamically by a separate entity which we refer to as the verifier.



The Schnorr identification scheme is as follows.

e KeyGen()\) — (sk, PK): Sample the secret key sk <~ Z, with respect to
the security parameter \; generate the public key PK « ¢®*. Output
(sk, PK).

e Prove(PK) — {0,1}: Occurs as a three-move interactive protocol between
the prover and the verifier.

1. The prover begins by sampling a nonce r < Z, and commitment
R <+ ¢", and sends R to the verifier.
2. The verifier samples a challenge ¢ <~ Z, and sends c to the prover.

3. The prover generates the response

z4+1r+c-sk

The prover then sends the response z to the challenger
4. The verifier then checks that

¢ £ R- PK®

If the check holds, the verifier outputs success, otherwise outputs
failure.

The prover uses the randomizer r to ensure that their response does not allow
the verifier to learn sk; i.e, to ensure that the protocol is zero-knowledge. Ob-
serve that the verifier learns nothing about sk other than that the prover knows
the discrete logarithm of PK. Further, the protocol is a proof of knowledge, in
that the prover cannot lie about their knowledge of sk.

3.2 Schnorr Signatures

To move to a signature of knowledge with respect to a message m, the Fiat-
Shamir transform is used, to allow the signing operation to instead be non-
interactive. In short, the Fiat-Shamir transform allows the prover to derive the
challenge non-interactively via a hash function, instead of dynamically interact-
ing with a challenger.

The Schnorr signature scheme is as follows.

o KeyGen()\) — (sk, PK): Sample the secret key sk <> Z,; generate the
public key PK <+ g**. Output (sk, PK).

e Sign(PK) — o: Derive the challenge as ¢ < H(R,m, PK) and the re-
sponse as z < r + ¢ sk. Output the signature 0 = (R, z).

o Verify(PK,m,o0) — {0,1}: The verifier derives the challenge as ¢ «+

H(R,m, PK), and then checks if g~ L R. PK?. If the check holds, the
verifier outputs 1, otherwise 0.



Simulation of Schnorr Signature Scheme

Signer(PK) Verifier(PK)

z,¢ 4 Zg
R+ g° PK°
// Deriwe R relative to PK
H(R,m) «+c
// Program the random oracle H
// on inputs R,m to output c

o= (R,z)

¢« H(R,m)
¢~ R-PK~°
// Because H has already
// been programmed, ¢’ = c
// The check holds true,
// due to the derivation of R

Figure 1: Simulation of the Schnorr signature scheme. The environment receives
a challenge PK € G for which it does not know the discrete log; it then simulates
signing with respect to PK to the adversary, which plays the role of the verifier.

4 Proof for Schnorr Signatures via ROM

We'll start first by reviewing the proof of security for Schnorr’s signature scheme.
In this setting, the proof of security requires operating within the random oracle
model (ROM) and builds upon the forking lemma.

Proving the security of Schnorr signatures with respect to the discrete log-
arithm problem and the ROM is as follows, and is summarized in Figure [3.2]
First, we employ a simulator SIM which simulates all actions of a signer to
a probabilistic (given access to a random tape) computationally bound (poly-
nomial time) adversary. SIM will operate in such a way that the adversary
will believe that it is interacting with a real signer. Doing so is critical to
demonstrating that the scheme is secure, otherwise an adversary in a security
experiment might act differently from a real adversary attacking the scheme.
Here, instead of performing the Schnorr key generation directly as described in
Section [3.2] SIM instead accepts a challenge Y € G whose discrete logarithm is
unknown. To extract the dlog of Y, SIM will use as a subroutine an adversary
A whose goal is to produce a forgery of a Schnorr signature with respect to



some public key PK. In other words, SIM sets PK =Y, simulates the Schnorr
signing protocol to A, and then uses the forgeries produced by A to extract the
discrete logarithm of Y. This is where the ROM is needed, because in order to
simulate correctly, SIM must program the random oracle so that the signature
is correct, but the adversary cannot distinguish the programmed random oracle
from a real execution.

In doing so, we can claim that producing a forgery of a Schnorr signature
for a particular public key is as hard as finding the discrete logarithm of Y.
It is important that we treat A as a black boxr; no assumptions about how A
produces these forgeries are made, just that A is capable of doing so efficiently.

In this simulation, SIM simulates two oracles that the adversary is allowed
to query with inputs of its choosing.

1. First, SIM simulates the signing oracle Sign(PK,m) — o. The adversary
provides as input the public key PK for which the signature is valid with
respect to, and the message m that the message will be produced for.

2. Second, SIM simulates the random oracle H. This is important, as SIM
is allowed to see all inputs to H and choose its outputs.

The only restriction on SIM for how to implement these oracles is that it
must do so in a way that is indistinguishable to A from a real signer. We now
describe how SIM implements these oracles.

To simulate H with arbitrary input from the adversary, SIM maintains an
internal table (Q that maps inputs to H with their respective outputs. When
it receives a query, it first checks to see if an entry exists in (). Otherwise,
it samples an output £ from Z,, programs @ to return ¢ with respect to this
particular input in the future, and returns 4.

To simulate Sign for each query made by the adversary with inputs (PK,m),
the prover selects the response and challenge at random z, ¢ <~ Z,. The prover
then derives the commitment R < ¢% - PK~°. Importantly, the prover then
programs H on inputs (R, m, PK) to output ¢. In the future, when A queries
the random oracle as H(R, m) (which it can do independently of querying the
signature oracle), the adversary will receive c. Note that because ¢ is chosen
uniformly at random, the simulation is perfect. Finally, SIM outputs o = (R, z)
as the signature. The simulation is perfect, as g* = R - PK°.

Critical to SIM’s success is that it can program H(R,m) strictly before the
adversary is able to query for its output.

Extracting the discrete logarithm of the challenge. An adversary that is
successful will eventually produce a forgery (m*, c* = (R*, 2*)) that is valid with
respect to Y. Note the definition of a forgery is that ¢* is a valid signature, but
was not queried to Sign. However, this forgery alone is not enough to extract the
discrete logarithm of Y. So, SIM re-winds the adversary to the beginning of the
experiment, providing it with the same random tape. However, SIM programs
H(R*,m*, PK) to instead output ¢/, where ¢’ # ¢. So, when the adversary



produces their second forgery (m*,o* = (R*, 2**)), the forking lemma says that
the adversary will produce such an output with some non-negligible probability.
And so SIM will output x, where ¢* =Y, by deriving:

P L
(C* _ C**)

Recalling that the response has the form z = r + ¢ - sk and that z*,2**
are with respect to the same commitment R*, it becomes clear that the above
equality evaluates to sk = . And so an adversary that can produce a forgery
of a Schnorr signature can be used as a subroutine to extract discrete logarithm
of an arbitrary challenge value Y € G.

5 Proof for Schnorr Identification Scheme

Notice that in the proof for Schnorr signatures, SIM has the ability to select the
challenge and program the random oracle before the adversary is allowed to see
the challenge. However, in the setting for the Schnorr identification protocol,
the prover receives a challenge that is selected by the verifier. And so the proof
strategy for Schnorr signatures does not immediately apply to the proof for the
Schnorr identification protocol, because the verifier learns the challenge before
the signer does.

Because of this restriction, the Schnorr identification protocol requires the
assumption that the verifier acts honestly when selecting the challenge.

To reflect this assumption in the proof of security, the adversary is simply
given the transcript of the interaction between the prover and the verifier, and
allowed to check that the protocol was executed honestly.

The adversary is required to produce an accepting transcript with respect
to Y'; however, SIM plays the role of the verifier (and so supplies the challenge
to the adversary). Similar to before, if the adversary can produce two accepting
transcripts (after rewinding), then the discrete logarithm of Y can be obtained
as before.

6 Proof for Schnorr Signatures via AGM

Now let’s look at proving the security of Schnorr signatures in the Algebraic
Group Model (AGM). The AGM was formalized by Fuchsbauer, Kiltz, and
Loss in 2019 [2], as a model to allow for tighter security reductions than what
the standard model allows for. Recall that the standard model assumes only
that the adversary is computationally bound and probabilistic. In a nutshell,
the AGM requires an adversary that outputs a group element A € G to also
output the vector @ = {(ao, .. ., a,) representing how A is the linear combination
A = g®Cy* ... of all group elements g,Cop, C1,... € G that the adversary has
seen throughout its execution.



Importantly for the provability of Schnorr signatures, the AGM allows for a
straight-line reduction, meaning that the adversary does not need to be rewound
while still allowing for a reduction to the hardness of discrete log. This fact
means that proofs in the AGM are less cumbersome and are easier to analyze,
as we don’t need to think through all edge cases associated with rewinding.

Similarly to in the ROM, the simulator SIM accepts as input a challenge Y
and uses this challenge PK < Y as the public key in a simulation of Schnorr
signing to an adversary. SIM again simulates the random oracle H and signing
oracle Sign to the adversary. However, in this setting, when A outputs its
forgery o* = (R*, m"*), it also outputs d.

At this point, SIM can extract the discrete logarithm of Y without rewinding
the adversary to generate a second forgery. Let’s look at a simple example
where R* = g% PK“' (which is possible, as at the beginning of its execution the
adversary is given knowledge of the generator and the public key). Recalling
that the equality holds R = ¢g*PK ™ ° for a valid signature, combining terms
gives the following equation:

g PK* = R=¢g*PK™¢
Re-arranging:
PKCL1+C — gz—ao
PK = goite

zZ—ag :
P directly,

Because SIM knows z, c*, ag, a1, SIM can simply derive sk =
thereby learning the discrete log to the challenge.

7 Proof for Concurrent Schnorr Identification
via OMDL

Informally, the one more discrete log (OMDL) problem can be stated as follows.
After t queries to a challenge oracle that outputs a challenge Y; and ¢ — 1 queries
to the discrete logarithm oracle that outputs x; such that Y; = g*¢, the challenge
is to output one additional discrete logarithm x; where Y; was not queried to
the discrete logarithm oracle. Note this problem can also be expressed where
ordering is not assumed (i.e, the discrete logarithm oracle can be queried on any
t — 1 challenge values, so long as the solver produces t solutions corresponding
to the t challenges).

The OMDL problem is useful for proving variants of Schnorr signature
schemes when it becomes difficult for the prover to correctly program the ran-
dom oracle. Such situations can occur when the adversary has more influence
over the inputs that are provided to the random oracle. For example, in thresh-
old signature schemes or blind signatures, the adversary is allowed to participate
in the signing protocol, and so has some amount of influence over the value of



Simulation of Concurrent Schnorr Identification
Prover(PK) Challenger

R+ DLChal()
// Receive a DL challenge

// Sample ¢ from the challenge space C

C

Z «+ R-PK*®
2z < DLsoi(2)

Figure 2: Simulation of Schnorr Identification Protocol against Concurrent
queries. The challenge space is denoted as C. The response z is derived from
querying for the discrete logarithm solution to Z. The public key PK is simi-
larly an output of DLcpq-

the challenge. In this setting, proving security becomes harder because the sim-
ulator does not know the value of the challenge ¢ when it selects its commitment
R. While OMDL allows for a useful proving mechanism in this setting, OMDL
is a stronger assumption than plain dlog, which has tradeoffs when considering
how realistic this assumption is in a practical setting.

The proof of Schnorr’s identification scheme in a concurrent setting was given
by Bellare and Palacio [I]. In this setting, the simulator is required to simulate
the identification protocol as a series of some number of sessions, as opposed
to performing a single execution. We denote the oracle that outputs a random
discrete log challenge as DLcpqi() — Y such that Y € G and the oracle that
outputs a discrete log solution as DLsy(Y) — x such that Y = ¢*.

The simulation of Schnorr’s identification scheme in a concurrent setting is
sketched in Figure and is roughly as follows. First, SIM obtains PK via
querying PK <> DLcpq(). To issue a commitment R;, SIM queries the oracle
R; <~ DLcpa(). Tt then sends the verifier R;. Upon receiving the challenge c;
from the verifier, SIM queries DLgy (R; - PK), receiving z; in return. It then
sends z; to the verifier. The transcript of this interaction is then sent to the
adversary.

Let’s assume the prover is required to perform ¢ concurrent iterations of the
Prove operation against a challenger. The prover will have queried DLcpq()
and DL, each exactly ¢ times. Then, after providing the adversary with this



transcript across two iterations with the same source of randomness, the envi-
ronment receives two forgeries (R*, c*, z*), (R*, ¢**, 2**) by the forking lemma.
Using the same strategy as in prior proofs, the environment can extract sk
from these two forgeries. Then, using knowledge of sk and each (R;,c;, 2;), the
environment can solve for Ry,..., Ry. Hence, an adversary that can produce
forgeries against the Schnorr identification protocol in a concurrent setting could
be used as a subroutine to solve the OMDL problem.

8 Acknowledgments

Many thanks to Deirdre Connolly for her help in reviewing and giving helpful
feedback on this note.

References

[1] M. Bellare and A. Palacio. GQ and schnorr identification schemes: Proofs
of security against impersonation under active and concurrent attacks. In
M. Yung, editor, CRYPTO 2002, 22nd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 18-22, 2002, volume
2442 of LNCS, pages 162-177. Springer, 2002.

[2] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its
applications. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018 -
38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, volume 10992 of LNCS, pages 33—62. Springer, 2018.



	Introduction
	Preliminaries
	Schnorr Identification and Signature Schemes
	Schnorr Identification Protocol
	Schnorr Signatures

	Proof for Schnorr Signatures via ROM
	Proof for Schnorr Identification Scheme
	Proof for Schnorr Signatures via AGM
	Proof for Concurrent Schnorr Identification via OMDL
	Acknowledgments

