
A Note on Various Forking Lemmas

Chelsea Komlo

April 24, 2023

1 Introduction

First introduced by Pointcheval and Stern [3], the forking lemma is commonly
used in proofs of security that require rewinding an adversary in order to demon-
strate a reduction to breaking some known-to-be-hard mathematical problem.
In this note, we review the original forking lemma and several variations thereof.
Each variation is made in the effort to provide a tighter proof of security for
the context that it is used, or better abstraction as to allow for more general
applications.

The intuition for the forking lemma is as follows. We begin with an adversary
that is modeled as a probabilistic Turing machine A that is initialized with a
random tape and access to a hash function modeled as a random oracle. While
the behavior of the adversary is generally not defined (making the adversary
“black box,” the adversary outputs some value that will either satisfy some
pre-defined conditions (thus winning the security game), or not satisfy these
conditions. Note this setup requires the assumption that a hash function can
be simulated by a truly random function, which is known as the “random oracle
model” [4].

If A completes its attack successfully, we can lower bound the probability
that A again completes successfully in a second execution with the same random
tape but different outputs from the random oracle. Determining this lower
bound on the success probability of A across two executions is important for
many proofs of security, as the two outputs are then employed to demonstrate
the reduction (i.e, solve for the discrete logarithm of a challenge).

In this note, we begin by first reviewing the original forking lemma by
Pointcheval and Stern. We then look at several subsequent variants, and how
each variant allows for better abstraction (and hence applications beyond signa-
ture schemes), tighter bounds in the security proof, or tailoring to the context
of a specific security proof.

2 Forking Lemma by Pointcheval and Stern

The first variant of the forking lemma was introduced by Pointcheval and Stern
in their proof of security for Schnorr signatures [3]. The lemma is with respect

1

to a digital signature scheme in the random oracle model. More specifically, the
lemma assumes an adversary modeled as a probabilistic Turing machine given
access to a random tape (source of randomness) and a hash function modeled
as a (programmable) random oracle. Then, the lemma demonstrates that if
the adversary outputs a valid forgery σ for random oracle output h in its first
execution, then with non-negligible probability, the adversary will output a valid
second forgery with respect to a different different random oracle output h′ with
non-negligible success. Here, non-negligible specifically means the probability
of success must be greater than 1/f(n), where f(n) is any polynomial function.

Lemma 2.1. Forking Lemma. Let A be a probabilistic polynomial time Tur-
ing machine given only public data as input. If A can find with non-negligible
probability a valid signature σ with respect to a message m and random oracle
output h, then, with non-negligible probability, if A is executed a second time
with the same source of randomness but a different random oracle, then A will
output a second valid forgery σ′ for the same message m but with respect to a
random oracle output h′, such that h ̸= h′.

Pointcheval and Stern later give a different variant of the forking lemma [4]
with respect to the adversary’s probability of success ϵ and time bound T .

2.1 Applications

The forking lemma allows for demonstrating a reduction to discrete log for
Schnorr signatures. Recall that a Schnorr signature is the tuple σ = (R, z),
such that R = gr and z = r + c · x, where x is the secret key and Y = gx is the
public key.

In the random oracle model, the simulator receives Y as the challenge and
can simulate signing with respect to Y by programming the random oracle.
After the simulator runs A and receives two valid forgeries σ = (R, z) and
σ′ = (R, z′) with respect to Y , the simulator can output x by deriving:

z − z′

(c− c′)

where c = H(R,m) in the first execution of the adversary, and c′ = H(R,m)
in the second execution of the adversary, but critically, such that c ̸= c′. The
fact that c ̸= c′ cannot be detected by the adversary though, as it is executed
twice, without keeping state between each execution.

3 General Forking Lemma

Unlike the forking lemma by Pointcheval and Stern, the general forking lemma
introduced by Bellare and Neven [2] abstracts away the details of signature
schemes and random oracles. Instead, the lemma simply asserts on the proba-
bility of some output of an algorithm when run on two related inputs.

2

Algorithm GenFork(X)

Pick coins ρ for A at random.

{h1, . . . , hq} ←$ H // Sample q elements from H

Q← {h1, . . . , hq}
(i, aux)←$ A(X,Q; ρ)

return ⊥ if i = ⊥
{h′

i, . . . , h
′
q} ←$ H

Q′ ← {h1, . . . , hi−1} ∪ {h′
i, . . . , h

′
q}

// Q and Q′ differ at (q − i+ 1) points

(i′, aux′)←$ A(X,Q′; ρ)

return ⊥ if i = ⊥
if i = i′

// Check that the output is with respect to the same “forked” index

if hi ̸= h′
i

// Check that a hash collision has not occurred.

return (1, aux, aux′)

return ⊥

Figure 1: General Forking Algorithm

Let q ≥ 1 be an integer, and H be a set. Let X ∈ G, such that X ←$ IG,
where IG is the instance generator. As before, let A be a randomized algorithm,
that outputs i ∈ {⊥} ∪ {1, . . . , q}, and auxiliary output aux. We denote the
general forking algorithm as GenFork, and show it below.

Let acc(X) denotes the probability that A completes successfully. I.e, acc
denotes that A outputs a value that is accepted in its first execution in GenFork
when given the input X. We show this probability in Equation 1.

acc(X) = Pr
[
i ≥ 1 : {h1, . . . , hq} ←$ Hq ; (i, aux)←$ A(X, {h1, . . . , h1})

]
(1)

Let ForkAcc denote the probability that GenFork returns successfully given
some X ←$ IG, as in Equation 2:

ForkAcc = Pr
[
b = 1 : X ←$ IG ; (b, aux, aux′)←$ GenFork(X)

]
(2)

Bellare and Neven then demonstrate that Equations 1 generalize to any
X ←$ IG. So Lemma 3.1 can be proved with respect to simply acc, as follows:

Lemma 3.1. Given acc and ForkAcc, as defined, then ForkAcc is lower bounded
by acc as in Equation 3.

3

ForkAcc ≥ acc ·
(acc

q
− 1

|H|
)

(3)

Alternatively:

acc ≤ q

|H|
+

√
q · ForkAcc (4)

3.1 Applications

While the general forking lemma models the adversary A as what is executed
by the forking algorithm directly, when employed in a proof, there is need for
an intermediate adversary which simulates the environment to the actual ad-
versary which attacks the scheme. So in practice, GenFork(X) will execute some
adversary B, which will set up and simulate the environment (generally with
respect to some challenge), such as a signing protocol. B will then execute A
which actually attacks the scheme, interacting with B in order to do so.

Why the need for all of this indirection? We need to argue that A interacts
with the scheme in a way that is indistinguishable from a real run of the protocol.
The job of B is to ensure that, using the inputs of GenFork(X) to do so.

4 Local Forking Lemma

Unlike the generalized forking algorithm GenFork where Q and Q′ differ by q− i
elements, the local forking lemma [1] is such that the sets employed as input
to A differ by only a single element. Intuitively, this translates to the random
oracle being re-programmed at only a single point after the fork, as opposed to
every point after the fork. In particular, the oracle is re-programmed only at
the index i output by A in its first execution. Why is this useful? The bounds
in the proof of security can then be tighter, which allows for a more accurate
representation of the security of the scheme.

We show the local forking algorithm in Figure 2:. The local forking algorithm
gives (slightly) tighter bounds than the general forking lemma, as shown in
Equation 5.

ForkAcc ≥ acc2

q
(5)

Lemma 4.1. Given acc and ForkAcc, as defined, then ForkAcc is lower bounded
by acc as in Equation 5.

5 Extension of Generalized Forking Lemma

In recent analysis of the FROST signature scheme, Bellare, Tessaro, and Zhu
introduced an extension of the generalized forking lemma as well as an extension

4

Algorithm LocalFork(X)

Pick coins ρ for A at random.

{h1, . . . , hq} ←$ Hq

Q← {h1, . . . , hq}
(i, aux)←$ A(X,Q; ρ)

return ⊥ if i = ⊥
h′
i ←$ H

Q′ ← {h1, . . . , hi−1} ∪ {h′
i} ∪ {hi+1 . . . , hq}

// Q and Q′ differ at exactly one point; at index i

(i′, aux′)←$ A(X,Q′; ρ)

return ⊥ if i = ⊥
if i = i′

return (i, aux, aux′)

return ⊥

Figure 2: Local Forking Algorithm

to the local forking lemma. We review the generalized forking lemma extension
here, and the extension of the local forking lemma in Section 6.

Let S ⊆ {1, . . . , q}. LetA be a randomized algorithm that on input (X, {h1, . . . , hq}),
outputs an index i ∈ {⊥} ∪ S, as well as auxiliary output aux.

The probability that the adversary will complete successfully acc and the
probability that ForkAcc will output success is then as in Equation 6.

ForkAcc ≥ acc2

|S|
(6)

Intuitively, Equation 6 gives (slightly) tighter bounds than the general-
ized forking lemma, as it bounds the acceptance probability to a subset S ⊆
{1, . . . , q}. If it can be guaranteed that the adversary’s output is strictly within
S, then this variant allows for tighter bounds. Doing so is possible in the proof
for FROST, as the adversary must query two random oracles in strict succes-
sion (as the output from the first random oracle is input into the second), which
ensures that the environment can program the second random oracle at the
time that the first is queried. Hence, the bounds can be scoped to the number
of queries that the adversary has actually made to the first random oracle, as
opposed to the range of allowed queries to the second random oracle.

5

6 Extension of Local Forking Lemma

We now review a “looser” local forking lemma again given by Bellare, Tessaro,
and Zhu, this time in their analysis of the unforgeability for FROST.

The difference in this forking lemma is as follows. Here, forking occurs on
two indices (i, j) in the first execution and (i′, j′) in the second execution. In
this setting, i, i′ are indices with respect to a random oracle. j is an auxiliary
index that is guaranteed to be in the set J , and is used in the context of the
wider proof. However, this forking lemma variant additionally enforces that
the indices j, j are the same both before and after the fork, which results in a
slightly looser bound than the original local forking lemma.

Why is this useful? This adaptation to the forking lemma is able to qualify
over more information than simply some index i, as opposed to prior variants.
In other words, additional auxiliary information can be reflected in the analysis
of the adversary’s likelihood of success.

This “looser” local forking lemma is given in the following algorithm.

Algorithm ExtLFork(X)

Pick coins ρ for A at random.

{h1, . . . , hq} ←$ Hq

Q← {h1, . . . , hq}
(i, j, aux)←$ A(X,Q; ρ)

// j is guaranteed to be strictly in some set J

return ⊥ if i = ⊥
h′
i ←$ H

Q′ ← {h1, . . . , hi−1} ∪ {h′
i} ∪ {hi+1 . . . , hq}

(i′, j′, aux′)←$ A(X,Q′; ρ)

return ⊥ if i = ⊥
if i = i′ and j = j′

return (i, j, aux, aux′)

return ⊥

The probability that ForkAcc will complete successfully is then reflected in
Equation 7.

ForkAcc ≥ acc2

q · |J |
(7)

7 Applications: Schnorr signatures

We now give an expanded version of the proof of security for Schnorr signatures.
This proof is given by Bellare and Neven [2], but we show this proof here now
with more detail.

6

7.1 Preliminaries

Definition 7.1. A signature scheme SIG is a triple of PPT algorithms
(KeyGen,Sign,Verify) invoked as

(PK , sk)←$ KeyGen(1λ), σ ←$ Sign(sk ,m), Verify(PK ,m, σ) ∈ {0, 1}.

The scheme is strongly unforgeable if the following function is negligible

AdvufA,SIG(λ) := Pr

[
Verify(PK ,m, σ) = 1

(m,σ) ̸∈
{
(mi, σi)

}q

i=1

:
(PK , sk)←$ KeyGen(1λ)

(m,σ)←$ AOSign(·)(PK)

]
where OSign(mi) returns σi ←$ Sign(sk ,mi) for i = 1, . . . , q.

7.2 Schnorr Signatures

The Schnorr signature scheme is as follows, with respect to a hash function
Hc : (G, {0, 1}n,G)→ Zp.

• KeyGen(1λ): Sample a secret key sk ←$ Zp; generate the public key as
PK ← gsk . Output (sk ,PK).

• Sign(sk ,m): Sample a nonce r ←$ Zp; generate its commitment as R← gr.
Derive the challenge as c← Hc(PK , R,m) and the response as z ← r+csk .
Output σ = (R, z).

• Verify(PK , σ = (R, z)): Check that the equality gz
?
= R · PK c holds.

Output 0 if it does not, otherwise, output 1.

7.3 A Proof for Schnorr Signatures

We next show how to prove the security of Schnorr signatures using the general
forking lemma. Note that the same result applies, even if the local forking
lemma were instead employed.

Theorem 7.1. For a group G of prime order p where the discrete logarithm
problem is assumed to be hard, and hash function Hc(G,G, {0, 1}∗) → Zp, the
Schnorr signature scheme is unforgeable. In other words, for every adversary A
that wins the unforgeability game against the Schnorr signature scheme, there
exists an adversary D that uses the general forking algorithm GenFork as shown
in Figure 1 to win the discrete logarithm game.

Concretely, the advantage of D is bounded by Equation 8.

AdvdlSIG,D(λ) ≥
(AdvufSIG,A(λ))

2

q
− 2qs

p
− 1

p
(8)

where q = qs + qh + 1, qs is the number of queries to the signing oracle that
A is allowed to make, and qh is the number of allowed random oracle queries.

7

Algorithm C(X, {h1, . . . hq})
1 : // q = qs + qh + 1 is the total

2 : // number of possible queries

3 : // to Hc during the simulation.

4 : PK ← X

5 : // The challenge is the public key

6 : k ← 1 // Track queries to random oracle

7 : k′ ← 0 // Track signing oracle queries

8 : bad← 0

9 : E ← ∅, Q← ∅

10 : (m∗, σ∗)←$ AOSign(·)
(PK)

11 : if bad = 1

12 : return ⊥ // fail if bad hash query

13 : return ⊥ if (m∗, σ∗) ∈ E

14 : // fail if signature is not a forgery

15 : return ⊥ if SIG.Verify(PK ,m∗, σ∗) ̸= 1

16 : // fail if the forgery is not valid

17 : (R∗, z∗)← σ∗

18 : hj ← Q(PK , R∗,m∗)

19 : // challenge for A’s forgery

20 : aux← (hj , z
∗)

21 : return (j, aux)

OSign(mi)

1 : return ⊥ if k′ ≥ qs

2 : // qs is the total number

3 : // of allowed signing queries

4 : k′ ← k′ + 1

5 : ci ← hk

6 : // Get next hash value

7 : zi ←$ Zp

8 : Ri ← gzi · PK−ci

9 : if Q[(PK , Ri,mi)] ̸= ⊥
10 : // A must guess Ri with

11 : //
q

2λ
chance per query

12 : bad← 1

13 : return ⊥
14 : Q[(PK , Ri,mi)] = ci

15 : // Program random oracle

16 : return σi = (Ri, zi)

Hc(PK , Ri,mi)

1 : // Performs lazy sampling

2 : return ⊥ if k > qH + 1

3 : // qH is the total number

4 : // of allowed random oracle

5 : // queries, plus one forgery.

6 : Q[(PK , Ri,mi)] = hk

7 : k ← k + 1

8 : return hk

Figure 3: Algorithm C simulation of the unforgeability game for Schnorr signa-
tures to an adversary A. Without loss of generality, we assume A queries Hc

on (PK , R∗,m∗).

8

We prove Theorem 7.1 by two lemmas.

Lemma 7.2. There exists an algorithm C as shown in Figure 3. which can per-
fectly simulate the Schnorr signature scheme with respect to a challenge instance
X.

Proof. Let A be an adversary playing the EUF-CMA game against the Schnorr
signature scheme, and let C be an algorithm that simulates this game to A. We
show the specifics of C in Figure 3.

Setup. C accepts as input the challenge instance X ∈ G, and the set q =
qh+ qs+1 values {h1, . . . , hq} ∈ Zq

p. C sets its public key PK = X. C initializes
tables E and Q to store its state and random oracle queries from A. C then
runs A, providing as input PK .

C responds to A’s signing and random oracle queries as follows.

Simulating Random Oracles. For each random oracle query by A, C sim-
ulates the random oracles Hc by lazy sampling:

• Hc(PK , Ri,mi): To begin, C checks to see if an entry in Q[(PK , Ri,mi)]
exists. If so, C returns it. Else, it sets Q[(PK , Ri,mi)] = hk. It then
returns hk as its output.

Simulating Signing Oracles. C simulates the signing oracles to A as follows.

• OSign(mi): To begin, C assigns the challenge ci as the next available hash
value hk. It then randomly samples the response zi ←$ Zp. It derives
the commitment Ri as Ri ← gzi · PK−ci , and then programs the random
oracle as Q(PK , Ri,mi) = ci. It then returns (Ri, zi) as its response.

C’s simulation of Sign(mi) is perfect, because when the adversary verifies σi,
it will first query Hc(PK , Ri,mi), and will receive ci as output (because C has
already programmed Hc on these inputs). The resulting signature will be valid,
because of how Ri is derived with respect to zi,PK and ci

This completes the proof.

Lemma 7.3. Let D be an adversary playing against the discrete logarithm game,
receiving as input a challenge Y ∈ G and winning the game if it produces a
value x such that Y = gx. The advantage of D is bounded by its ability to
receive an accepting output from GenForkC and use this output to solve for the
DL challenge, as characterized by Equation 8.

Proof. We show the reduction D in Figure 4. To begin, D receives its discrete
logarithm challenge X. The goal to D is to produce an output y such that
Y = gx.
D then queries GenForkC(X), where C is the simulating algorithm as defined

in Figure 3. As output, D receives either ⊥ indicating failure or (1, aux, aux′)

9

Reduction D()
1 : X ←$ ODL()

2 : // Query for DL challenge

3 : out←$ GenForkC(X)

4 : if out = ⊥
5 : return ⊥
6 : (1, aux, aux′)← out

7 : (c∗, z∗)← aux; (c∗∗, z∗∗)← aux′

8 : x← z∗ − z∗∗

c∗ − c∗∗

9 : return x

Figure 4: The reduction D.

indicating success. Recall that aux = (c∗, z∗) and aux′ = (c∗∗, z∗∗). On failure,
it returns ⊥. Else, it returns the discrete logarithm x, by solving x = z∗−z∗∗

c∗−c∗∗ .
The probability acc that C outputs an accepting answer is simply the ad-

vantage that A wins the unforgeability game, or:

acc = Pr[C outputs 1]

≥ AdvufSIG,A(λ)− Pr[bad = true]

≥ AdvufSIG,A(λ)−
qsq

p

(9)

What is the probability that Pr[bad = true]? Each time A queries the signing
oracle, it has q

p opportunities to guess Ri correctly (where G is of prime order

p). So in total, Pr[bad = true] = qs·q
p , because A is allowed qs signing queries

each time it is executed.
Recall that the codomain of Hc(G,G, {0, 1}∗) → Zp is of order p. Hence,

the probability that a hash collision occurs (i.e, Pr[HashCollision]) is 1
p . Then,

applying the General Forking Lemma 3.1, the advantage of D in solving its DL
challenge is:

AdvdlSIG,A(λ) ≥ Pr[GenForkC(X) outputs 1]− Pr[HashCollision]

≥ acc(
acc

q
− 1

p
) // general forking lemma

≥ (
AdvufSIG,A(λ)− qsq)

2

q
−

AdvufSIG,A(λ)− qsq

p

(10)

Now, observe that from Equation 9:

10

AdvufSIG,A(λ)− qsq ≤ 1, and so

AdvufSIG,A(λ)]− qsq

p
≥ −1

p

(11)

Next, with some algebra, observe that:

(AdvufSIG,A(λ))
2 = (AdvufSIG,A(λ))

2 − 2AdvufSIG,A(λ)
qsq

p
+ (

q

p
)2

≥ (AdvufSIG,A(λ))
2 − 2

qsq

p

(12)

Hence, after some (more) algebra:

AdvdlSIG,A(λ) ≥ (
AdvufSIG,A(λ)− qsq)

2

q
−

AdvufSIG,A(λ)− qsq

p
// From Equation 10

≥
(AdvufSIG,A(λ)− qsq)

2

q
− 1

p
// From Equation 11

≥
AdvufSIG,A(λ)

2

q
−

2qsq
p

q
− 1

p
// From Equation 13

≥
AdvufSIG,A(λ)

2

q
− 2qs

p
− 1

p
(13)

Which gives us Equation!8. This completes the proof.

8 Conclusion

In this note, we review the first variant of the forking lemma presented by
Pointcheval and Stern. We then review its generalization beyond signature
schemes, and several subsequent variants. Each variant is tailored to the spe-
cific proof of security which it is employed, or allows for tighter bounds or
generalization beyond signature schemes. We finally give an expanded variant
of the proof for Schnorr signatures using the general forking lemma, and discuss
how the local forking lemma can likewise be employed with slightly tigheter
bounds.

9 Acknowledgements

Many thanks to Gregory Neven for his discussion on the proof for Schnorr
signatures and notes on deriving the concrete bounds after applying the general
forking lemma.

11

References

[1] M. Bellare, W. Dai, and L. Li. The local forking lemma and its applica-
tion to deterministic encryption. In S. D. Galbraith and S. Moriai, editors,
Advances in Cryptology - ASIACRYPT 2019 - 25th International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Kobe, Japan, December 8-12, 2019, Proceedings, Part III, volume 11923 of
Lecture Notes in Computer Science, pages 607–636. Springer, 2019.

[2] M. Bellare and G. Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In A. Juels, R. N. Wright, and S. D. C.
di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, Alexandria, VA, USA, October
30 - November 3, 2006, pages 390–399. ACM, 2006.

[3] D. Pointcheval and J. Stern. Security proofs for signature schemes. In
U. M. Maurer, editor, Advances in Cryptology - EUROCRYPT ’96, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lec-
ture Notes in Computer Science, pages 387–398. Springer, 1996.

[4] D. Pointcheval and J. Stern. Security arguments for digital signatures and
blind signatures. J. Cryptol., 13(3):361–396, 2000.

12

	Introduction
	Forking Lemma by Pointcheval and Stern
	Applications

	General Forking Lemma
	Applications

	Local Forking Lemma
	Extension of Generalized Forking Lemma
	Extension of Local Forking Lemma
	Applications: Schnorr signatures
	Preliminaries
	Schnorr Signatures
	A Proof for Schnorr Signatures

	Conclusion
	Acknowledgements

