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1 Introduction

In this note, we survey several idealized models and their comparison in the
literature, summarizing observations made by Zhandry et al. [12,11].

A generic group is an idealized cryptographic group where group opeartions
are carried out by making queries to oracles that simulate group operations,
without revealing the elements of the underlying group directly. In other words,
both adversaries and constructions do not make any use of the particular features
of a group, and instead only perform legal group operations. What constitutes
as a legal group operation is determined by the particular model.

Such generic groups follows similarities with the Random Oracle Model, as
discussed next.

2 The Random Oracle Model (ROM)

In the ROM, cryptographic hash functions are treated as a uniformly random
function that can only be accessed by making (interactive) oracle queries. The
ROM is used as a mechanism to prove the security of cryptographic schemes
that are otherwise unable to be proven secure using only standard assumptions.

It is well-known that security in the ROM does not imply standard-model
security [1,8]. See [5] for an intuitive review of the above results.

3 Shoup’s Generic Group Model

As discussed, a generic group model represents a cryptographic group as an ide-
alized representation, where instead of interacting with group elements directly,
all parties instead make interactive oracle queries. Shoup [10] introduced one
varaint of a generic group model, which Zhandry [11] refers to this model as
the “random representation model.” Instead of interacting with group elements
directly, all parties instead query labeling oracles and group operation oracles,
defined as follows.

We now describe Shoup’s model in more detail. Let q ∈ Z be a positive
integer and let S ⊂ {0, 1}∗ be the set of strings of cardinality at least q, where
some upper bound on S is assumed to be known.

– Setup(): Perform the following:
1. Initialize a table T = ∅.
2. Define a random injective function L(Zq) → S to serve as a “labeling

function.”
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– Label(x): Accept as input a value x ∈ Zq, and do the following:

1. Derive ℓ← L(x)
2. If T [ℓ] = ⊥, set T [x] = ℓ

3. Output ℓ

– GroupOp(ℓ1, ℓ2, a1, a2): On input two labels (ℓ1, ℓ2) and two scalars (a1, a2) ∈
Z2
q, perform the following:

1. If T [ℓ1] = ⊥ or T [ℓ2] = ⊥, return ⊥.
2. Otherwise, let x1 = T [ℓ1] and x2 = T [ℓ2].

3. Derive x3 = a1x1 + a2x2

4. Derive ℓ3 ← L(x3)

5. Set T [x3] = ℓ3
6. Return ℓ3

Intuition on the Relation of Shoup’s GGM to the ROM. Shoup’s model implies
the ROM, because Shoup’s model can be used to perfectly simulate the random
oracle model [12]. However, the converse is not true; the ROM does not imply
Shoup’s GGM. For example generic groups imply key agreement, but random
oracles cannot be used for public public-key agreement [6].

4 Maurer’s Generic Group Model

Similarly to in Shoup’s model, Maurer’s generic group model [7] supports labeling
queries and group operation queries, but additionally defines an equality query.
Also similarly to Shoup’s model, each row in the table represents some value gx

with respect to some fixed generator g.

Let q ∈ Z be a positive integer.

– Setup(): Perform the following:

1. Initialize a table T = ∅.
– Label(x, i): Accept as input a value x ∈ Zq and i ∈ Z, and do the following:

1. Set T [i] = x (potentially overwriting prior entries)

– GroupOp(i1, i2, i3, a1, a2): On input three integers (i1, i2, i3) ∈ Z3 and two
scalars (a1, a2) ∈ Z2

q, perform the following:

1. If T [i1] = ⊥ or T [i2] = ⊥, return ⊥.
2. Otherwise, let x1 = T [i1] and x2 = T [i2].

3. Derive x3 = a1x1 + a2x2

4. Set T [i3] = x3

– IsEq(i1, i2): On input two integers (i1, i2) ∈ Z2, perform the following:

1. If T [i1] = ⊥ or T [i2] = ⊥, return ⊥.
2. Return 1 if T [i1] = T [i2]

3. Otherwise, return 0
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Challenges with Maurer’s Model. As observed by Zhandry [11], potential issues
with Maruer’s model arise due to its requirement of keeping and overwriting
state. More specifically, these issues can arise when different components of a
cryptosystem access similar entries in the table, or even if the same component
is run multiple times, potentially concurrently.

The same issues arise when proving security in Maurer’s model. For exam-
ple, an adversary might overwrite entries in the table, changing the underlying
problem from one that is hard to one that is easy.

5 Zhandry’s Type Safe Model

As a fix for the challenges with Maurer’s model discussed above, Zhandry [11]
introduces the Type Safe (TS) model, noting that the TS model has in fact
already been used implicitly in many works claiming security in Maurer’s model.

The distinction between the TS model and Maurer’s model is that the TS
model provides a stateless oracle when interacting with the underlying ideal-
ized group, whereas Maurer’s model requires a stateful oracle. The TS model
additionally does not hide the underlying group elements, but instead simply
constrains the allowed legal operations that can be performed with respect to
these elements. Hence, algorithms perform these computations directly, as op-
posed to outsourcing computations to an oracle.

Let q ∈ Z be a positive integer. The TS model defines algorithms as circuits,
defined by wires and gates. The circuit supports two types of wires.

1. Bit wires. Denoted as BW; accepts a value b such that b ∈ {0, 1}.
2. Element wires. Denoted as EW; accepts a value a such that a ∈ Zq ∪ {⊥}.

The TS model supports the following oracles:

1. BitGate(b1, b2)→ b3: Accepts two bit wires (b1, b2) ∈ BW2 and outputs a bit
wire b3 ∈ BW.

2. LabelGate({bi}i∈[log2 q]) → e: Accepts log2 q bit wires. and encodes these as
an element x ∈ Zq, outputting ⊥ if the encoding fails. Otherwise, outputs
an element wire e ∈ EW.

3. GroupOp({b1i}i∈[log2 q], {b2i}i∈[log2 q], e1, e2) → e3: Accepts two sets of log2 q
bit wires, and encodes these as two elements (a1, a2) ∈ Z2

q, outputting ⊥ if
the encoding fails. Let (x1, x2) correspond to the element wires (e1, e2). Let
x3 ∈ Zq be the value x3 = a1x1+a2x2, and let e3 ∈ EW be the element wire
corresponding to x3. Output e3.

4. EqualityGate({b1i}i∈[log2 q], {b2i}i∈[log2 q]) → b: Accepts two sets of log2 q bit
wires, and encodes these as two elements (x1, x2) ∈ Z2

q. If the encoding is
successful and x1 = x2, outputs a bit wire b ∈ BW set to one. Otherwise,
outputs a bit wire set to zero.

A game in the TS model allows both adversaries and challengers to interact
with gates (modeled as oracles) as described above. Further, these parties can
send bit and element wires to one another. We can think of element wires as
containing log2 q bits.
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5.1 Constraints on the TS/Maurer Models

Many works in the literature demonstrate that common cryptosystems cannot
be instantiated in the TS/Maurer model, including:

– Pseudorandom generators [11]
– Domain extensions for collision-resistant hash functions [11]
– Encryption with additive ciphertext size overhead [11]; any CPA-secure en-

cryption scheme whose domain is bits in the TS model must have a ciphertext
(comprised of group elements) of size at least the bit-length of the message.

– Delay functions [9]; such as time-lock puzzles and verifiable delay functions.
– Signatures [2]
– NIZKs in pairing-free groups [4]

So why use this model? It is an interesting indicator of what could be
possible using purely algebraic functions. However, impossibility results in the
TS/Maurer model need to be taken with a very large grain of salt.

6 Example of a Difference between Models

This example is again given by Zhandry [11].

The Blum-Micali PRG. Let us first introduce the Blum-Micali pseudo-random
generator. Let p ∈ Z be a prime integer.

1. Pick a seed x0 ←$ Zq and define a generator g ∈ Zq.
2. For i ∈ {1, . . . , n}, define xi = gxi−1 .
3. Then, for i ∈ {1, . . . , n}, output a hardcore bit bi extracted from xi.

The Blum-Micali PRG Can be Proven in Shoup’s Model. Translating the Blum-
Micali PRG to Shoup’s model is straightforward. Instead of modeling xi ∈ Zq,
these values instead are labels ℓi ← Label(xi). However, each ℓi must be log2 p
bits so that the adversary gains no advantage in viewing the labels than inter-
acting with each element directly.

The Blum-Micali PRG Cannot be Proven in the TS Model. Unfortunately, the
Blum-Micali PRG cannot be modeled by the Type Safe Model. Because each
xi ∈ EW is an element wire, it cannot be given as input to LabelGate to derive a
subsequent element wire (where LabelGate can be thought of outputting Y after
performing the operation Y = gx).

7 The Algebraic Group Model (AGM)

The Algebraic Group Model (AGM) was introduced by Fuchsbauer, Kiltz, and
Loss in 2017 [3]. Intuitively, the AGM requires that any group element output
by an adversary must be accompanied by a representation relative to an ordered
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set of group elements that the adversary has seen previously. In other words,
the adversary can see and interact with standard-model group elements directly,
but must be able to “explain” any group element that it outputs as a linear
combination of any group element it has interacted with previously.

Definition 1 (Algebraic Group Model (AGM) [3]). An adversary is
algebraic if for any group element Z ∈ G that it outputs, it is required to
output a representation a⃗ = (a0, a1, a2, . . .) such that

Z = ga0

∏
Y ai
i

where Y1, Y2, . . . are group elements the adversary has seen thus far.

Proofs of security in the AGM must be proven by a reduction to a hard
problem, as the adversary has unlimited access to the group representation and
so security cannot hold unconditionally.

7.1 Required Constraints for Proofs in the AGM

As observed by Zhandry, unless the constructions that are proven in the AGM
are constrained, it is trivially invalid, as illustrated by the following example [11].

Example 1. Let A be an algebraic adversary playing against some experiment
EC , where E is a security experiment and C is some cryptographic construction.
Let f(G) → {0, 1}∗ be an encoding function, and let g({0, 1}∗) → {0, 1}∗ be a
function that accepts a bit string and flips each bit, outputting the bit-flipped
string.

Suppose at some point during the experiment, A receives as input y′i, where
y′i = g(f(Yi)). Then A can output Yi, without knowing its representation.

As a counterexample Fuchsbauer et al. [3] suggest the following:

We demand that non-group element inputs must not depend on group elements.

However, what does this requirement actually mean formally for construc-
tions that are proven in the AGM? For example, does this mean that even
hashing operations cannot depend on group elements?

As a means to formalize this requirement, Zhandry [11] proposes the use of
the Type-Safe model, and observes that the Type-Safe model readily captures
this intuition, the implications of which are summarized in Section 8.

7.2 AGM Un-Instantiability

Zhandry [11] gives the following example and corresponding proof of a one-time
message-authentication code (MAC) that is secure in the AGM but completely
insecure in the standard model. Recall that in a one-time MAC, each key k can
be used to generate exactly one MAC output.
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EmM,A(λ)

k ←$ M.Gen()

(m, stateA)←$ A()
σ ←M.MAC(k,m)

(m∗, σ∗)←$ A(σ, stateA)
if M.Verify(k,m∗, σ∗) = 1

return 1

return 0

Fig. 1. The security game for a one-time message authentication code, where the key
k can be used for exactly one message.

Definition 2. A one-time message authentication code (MAC) is a triple
of PPT algorithmsM = (Gen,MAC,Verify), where:

– For correctness, we require that

∀m ∈M,Pr[Verify(k,m, σ) = 1 :
k ←$ Gen()

σ ← MAC(k,m)
]

– For security, for any adversary A, there exists a negligible function negl(λ)
such that A wins the experiment in Figure 1 with probability at most negl(negl).

A MAC that is Un-Instantiable in the AGM LetMAC′ = (Gen′,MAC′,Verify′)

be a secure one-time MAC. Then, let M̂ = (Ĝen, ˆMAC, ˆVerify) be a MAC that
is secure in the AGM but insecure in the standard model. M̂ is defined with
respect to the parameters (G, g, h), where G is a group of prime order q, and
g, h are both generators of the group such that the relation h = gα is unknown.
We then define M̂ as follows.

– M̂.Gen(): Perform the following:
1. k ←$ M′.Gen()
2. (γ, δ)←$ Zq

3. Output (k, γ, δ)
– M̂.MAC(k,m) On input k and m, do the following:

1. σ′ ←M′.MAC(k′,m)
2. Define m as the following function: H(Zq,Zq)→ {0, 1}ℓ
3. u← H(γ, δ)
4. Output (σ′, u, g)

– M̂.Verify(k,m, σ): On input k, message m, and σ, do:
1. IfM′.Verify(k,m, σ)→ 1: Output 1
2. Otherwise, parse (σ′, u, w)← σ
3. If w = gγhδ: Output 1
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4. Otherwise, output 0

Theorem 1 (Zhandry [11]). M̂ is a secure one-time MAC in the AGM under
the DL assumption but insecure under any instantiation of a group.

Proof Sketch. The scheme is clearly insecure in the standard model, as follows.

Standard Model Insecurity.

1. Pick m arbitrarily
2. Query M̂.MAC(m), receive (σ′, u, g)
3. Pick σ∗ arbitrarily
4. M̂.Verify(σ∗, g, u) will output 1.

However, the scheme can be proven secure in the AGM, as follows.

AGM Security.

1. Let (m∗, σ∗(σ′,m∗, w∗)) be A’s forgery.
2. BecauseM′ is secure, then w∗ = gγhδ.
3. Because A is algebraic, it must additionally output (α, β) such that

w∗ = gαhβ = gγhδ

4. We can define the following two cases:
(a) Case One: (α, β) ̸= (γ, δ): Then A can be used to solve for the discrete

log of h with respect to g.
(b) Case Two: (α, β) = (γ, δ): The only mechanism A has to learn the values

of (γ, δ) beyond random guessing is by ovserving the output of H, which
outputs log2 p bits. However, it is infeasible for A to recover (γ, δ), which
requires recovering 2 log2 p bits. This case then violates the incompress-
ibility of random strings.

5. Hence, an adversary that breaks the security of M̂ in the AGM can be used
as a subroutine to solve for the discrete logarithm of a challenge.

8 Relation Between Models

We now summarize results from [12,11] on the relation between security in the
discussed models and implications for security in other models.

– Security in the random oracle model implies security in Shoup’s model, but
the converse is not true.

– Security in Shoup’s model implies security in the TS model.
– For single-stage games, security in the TS model implies security in Shoup’s

model.
– for multi-stage games, security in the TS mode does not imply security in

Shoup’s model.
– The AGM allows for the same security as the TS model, and so inherits the

same limitations as the TS model.
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Zhandry [11] defines single-stage games as those which interact with a single
adversary. Multi-stage games assume multiple adversaries which require some
defined separation of state, capabilities, and means of communication with each
other and the environment.
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